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A B S T R A C T   

Due to a changing climate and increased urbanization, an escalation of urban flooding occurrences and its af-
tereffects are ever more dire. Notably, the frequency of extreme storms is expected to increase, and as built 
environments impede the absorption of water, the threat of loss of human life and property damages exceeding 
billions of dollars are heightened. Hence, agencies and organizations are implementing novel modeling methods 
to combat the consequences. This review details the concepts, impacts, and causes of urban flooding, along with 
the associated modeling endeavors. Moreover, this review describes contemporary directions towards urban 
flood resolutions, including the more recent hydraulic-hydrologic models that use modern computing archi-
tecture and the trending applications of artificial intelligence/machine learning techniques and crowdsourced 
data. Ultimately, a reference of utility is provided, as scientists and engineers are given an outline of the recent 
advances in urban flooding research.   

1. Introduction 

Urban flooding is a disaster with severe consequences. In urban 
areas, with limited infiltration, rainfall events may instigate a rapid 
ascent of floodwaters. Human mortality, injury and long-term health 
effects are possible outcomes as a result of drownings, vehicular acci-
dents, or collapsed structures. In addition, adverse economic impacts 
transpire, as transportation services and businesses are damaged and 
disrupted [80]. Due to increases in urbanization and severe weather 
events, urban flood occurrence and intensity is expected to increase in 
the future. Urban flooding has been studied extensively, and in recent 
years, there has been an increased momentum. Indeed, the United States 
(U.S.) Department of Energy has dedicated $66 million towards 
combating climate change-induced extreme events, such as urban 
flooding [198], and the National Academy of Sciences organized an ad 
hoc committee of scientists to conduct case studies and explore urban 
flood occurrences [128]. The urgency of research is therefore clear, and 
as a response, the scientific community has investigated causes, created 
models, and implemented mitigation techniques, generating a rich cat-
alog of urban flood studies. 

The goal of this paper is to review the fundamental aspects of urban 

flooding and provide a synthesis of contemporary interests and modern 
approaches. In the process, the paper attempts to synthesize urban flood 
studies, primarily with a United States (U.S.) focus. Fig. 1 depicts a chart 
outlining the elements of this review. There are a number of flood- 
related reviews. For instance, An Overview of Flood Concepts, Chal-
lenges, and Future Directions by Mishra et al., analyzes the phenomena of 
flooding, outlining risks, modeling, and suggestions for optimal resolu-
tions [119]. However, all types of floods are covered in the review; 
hence, the analysis particular to urban flooding is brief. Likewise, Teng 
et al., [175] and Fenton, [61] provide overviews of flooding and 
methods to assess risk, yet specifics on urban flooding are described 
minimally [61,175]. Distinctively, the current review is solely dedicated 
to urban flooding, probing specific driving factors and modeling chal-
lenges unique to urban flooding. 

There have also been previous reviews addressing aspects of urban 
flooding. In Urban flood impact assessment: A state-of-the-art review by 
Hammond et al., the impacts of urban flooding are examined, predom-
inantly, from an economic viewpoint [80]. The theme of the Hammond 
et al paper is that urban flood occurrence is devastating, and there is a 
need for improved methods of estimating the associated direct and in-
direct financial losses. By contrast, this paper presents a more 
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comprehensive discussion, where urban flood definitions, influences on 
flood severity, and current modeling undertakings are additionally 
explored. Also, in Advances in Urban Design and Engineering, Karmaker 
et al. dedicates a chapter, “Urban Flood Risk Mapping: A State-of-the-Art 
Review on Quantification, Current Practices, and Future Challenges”, to 
urban flooding [94]. While the chapter outlines urban flood risk and 
vulnerability; the discussion on modeling techniques is exclusively 
limited to physical models. Similarly, Bates, Bulti and Abebe, and Cea 
and Costabile also abridge the modeling discussion of flood risk and 
prediction to the physics-based modeling methodologies [16,29,32]. 
Physical modeling is highly significant in urban flood research; never-
theless, the utilization of statistical and machine learning models is also 
on the rise [123]. The inclusion of these contemporary techniques is 
essential to provide a holistic view. Accordingly, this review concerns 
recent advances, and there is also an in-depth discussion on data driven 
methods, specifically those incorporating Artificial Intelligence and 
Machine Learning (AI/ML) algorithms. There have been urban flood 
modeling reviews which have mentioned AI/ML methods [77,116]; yet, 
there is brevity in the descriptions of their implementations. Notably, in 
this review, there is a larger discussion on AI/ML methods. There is also 
a cohesive presentation of urban flood research, including the causes 
and impacts, where an understanding of the phenomena of urban 
flooding may be achieved, and the modeling endeavors, such as physical 
models and the newer, more trending, data-driven models are presented. 

2. Need for urban flood research 

Urban floods may occur when a pluvial flood occurs in built envi-
ronments where the natural landscape has been altered by the creation 
of sidewalks, buildings, and roads [66,161]. In these environments, 
impervious surfaces disrupt the absorption of rainwater into the ground. 
Consequently, instead of natural processes, sewer system becomes the 
central mode for stormwater removal. Highlighting the role of the sewer 
network, FEMA allows for urban flood characterization to include 
flooding by sewer back-ups (water entering properties from internal 

drains), clogged catch basins (blocked inlet drains of the stormwater 
infrastructure), manhole overflows (water flowing from sewer connec-
tion through the covers), and water seepage from walls and floors [66]. 
Moreover, the National Academy of Sciences describes urban flooding as 
floodwaters exceeding the stormwater capacity [128]. An urban flood 
may also be labeled as a flash flood. When high-intensity precipitation 
events occur in an urban environment, flood levels may rapidly arise as 
the sewer system struggles to remove the continuous downpour of 
water. Accordingly, in this incident, the categorization of the event 
would be that of an urban flash flood. 

Due to increased urbanization and the effects of climate change, the 
threat of urban flooding is evermore present. The proceeding subsection 
will detail these challenges. The impacts in regard to health and safety, 
economic consequences, and the effect of urbanization and climate- 
related intense rainfall events are discussed. 

2.1. Impact of flooding towards health and safety 

There is not extensive literature on deaths directly from urban 
flooding as most literature compiles statistics on deaths for all flooding 
incidents, including coastal and riverine floods. However, a glimpse of 
the urban flood danger may be revealed by specific events. For instance, 
in September of 2021, there were a total of 44 New York City (NYC), 
New Jersey, and Westchester County deaths from the urban flood event 
resulting from the Hurricane Ida-induced torrential rainfall [59,142]. 
Overall, it has been reported that there are approximately 100 flood 
related deaths in the U.S. annually [13,89]. Internationally, Jonkman 
and Kelman found that 175,000 flooding deaths had occurred over a 
period from 1975 to 2001[90], and Paterson and Harris estimated 
approximated 4,700 flood deaths in the year 2016[138]. 

There are a variety of ways urban flood fatalities occur. Considering 
the September 2021 post-tropical depression Ida event, 11 of the 13 NYC 
deaths were caused by basement flooding [192], where floodwaters 
entered the basement units of multi-family homes via windows and 
openings, trapping the residents inside and resulting in drowning. The 

Fig. 1. A flow chart outlining the key elements of the review.  
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data encompassing all flooding classifications also shows that drowning 
deaths are most frequently caused by vehicular flooding, as opposed to 
those who die within their homes [13,63,193]. Vehicle-related deaths 
comprising a large portion implies that the deceased may have been 
unaware of the imminent flooding danger, as the person would have 
otherwise taken cover in a shelter. Besides basement drownings and 
vehicular deaths, sources of flood fatalities include pedestrian crossings, 
collapsed buildings, and electrocution [13,14,191]. 

Aside from death, there are additional safety and health concerns 
associated with flooding. For one, non-fatal injuries, such as blunt 
trauma, contusions, lacerations, animal bites, and puncture wounds may 
be sustained [166,191]. Indeed, flooding events resulting in non-fatal 
damages are seven times more likely to occur than those resulting in 
death [91]. Moreover, these injuries are often brought about by downed 
power lines, debris, broken windows, falling trees, stray animals 
(snakes, rodents, etc.), and building collapses, which occur during floods 
[31,166]. While preventive measures such as boarding windows and 
seeking safe shelter may alleviate the occurrence of injuries, it has also 
been found that many of flood damages occur during transport or 
evacuation [166]. Therefore, earlier warning alerts would be beneficial 
as to allow more time for safety preparations. Another health concern of 
flooding is contaminated water. Ten Veldhuis et al demonstrated urban 
flood waters to contain elevated amounts of fecal matters. By studying 
three flooding incidents in Hague, the Netherlands, the intestinal 
enterococci and E.coli levels were found to be one to three times greater 
than the levels in European bathing quality water [174]. This finding 
indicates that the floodwaters posed unacceptable risk to human health 
[174]. Furthermore, the Center of Disease Control (CDC) states that 
floodwaters may contain human waste, industrial hazardous waste, and 
carcinogenic compounds, such as arsenic, chromium, and mercury, 
where exposure to the waters may cause skin rash, gastrointestinal 
illness, wound infections, tetanus, and leptospirosis [31]. Thus, flood-
waters pose physical danger with immediate effects, such as injuries or 
death, in addition to accompanying health risks, which may lead to 
disease and illness. 

2.2. Economic impacts of urban flooding 

There are substantial economic costs associated with urban flooding 
catastrophes. During an urban flooding event, destruction to the infra-
structure, such as power failures, interrupted transportation services, 
and structural damages to the buildings and vehicles, is possible. Given 
the dense population and infrastructure of cities, the financial loss in 
urban flooding is expected to be greater than that for a rural flood of 
similar magnitude [163]. Exemplifying the expense of flooding in urban 
areas, FEMA data shows that there were $10 billion in payouts, loans 
and grants to NYC and New Orleans over a 10-year period from 2004 to 
2014 [128]. Also, over a five-year period, it is estimated that there were 
more than $750 million in urban flooding costs for the Chicago metro 
area [42], and in Detroit, a single urban flooding incident of 2014 
resulted in approximately $2 billion of loss [134]. Finally, the post- 
tropical depression Ida mass casualty event of 2021 incurred $7.5 to 
$9 billion in expense to New York and $8 to $10 billion in New Jersey. 
The overall estimated economic loss to the U.S. from the Hurricane Ida 
incident is greater than $75 billion [21]. 

As well as the large natural disasters, chronic smaller floods cause 
financial strain. Indeed, Merz et al had shown that higher probability, 
low damage events had enacted more strain in case studies of riverine 
flooding [114]. Regrettably, the costs of lower magnitude and frequent 
urban floods are not as well documented [128]. The reason may be that 
small urban floods, occurring during high intensity rainfall days or days 
with steady rainfall of long duration, are sporadically located 
throughout a city. This would make monetary quantification difficult, as 
only specific sections are affected at a time. In NYC, for instance, by the 
subway damage of Superstorm Sandy, the Metropolitan Transportation 
Authority (MTA) had estimated $5 billion in transit costs [56,113,122]; 

likewise, for post-tropical depression Ida, NYC MTA announced the 
flooding damage to be $75 to $100 million [79]. Yet, throughout the 
years, there have been chronic, much smaller subway flooding and 
infrastructural incidents in NYC, where minimal or no cost estimates 
were publicly disclosed. Examples include the subway flooding during 
Hurricane Henri in August of 2021[25,115], Hurricane Elsa in July 2021 
[118,162], and Hurricane Florence in September of 2018 [57,64]. 
Additionally, news reports have depicted subway flooding on high 
rainfall days in the absence of tropical depressions, such as the subway 
flooding on May 5, 2017, where two services lines and a Penn Station 
entrance were shut down [149], yet no cost estimates were provided. 
The chronic urban flooding incidents carry a financial burden, including 
lower ticket sales (when a portion of transit is closed), increased 
cleaning fees, and critical costs of repair to electrical and plumbing 
systems. Yet, for these newsworthy events, documentation of the transit 
costs is undiscoverable. Therefore, there are economic stresses of urban 
flooding, of which are not fully quantified. 

In addition to the primary impacts of urban flooding, there are also 
indirect costs. An indirect cost is considered an expense that is not im-
mediate, and it may even occur years after the flood [5,80]. These types 
of costs include business interruption, loss of wages, long-term infra-
structural damage, disruption of goods and services, tourism reduction, 
relocation expenses, and rental income loss [5,80,155]. In a United 
Kingdom study, Penning-Rowsell and Parker found that indirect ex-
penses may be as high as 93% of direct flood losses [141], and in a 
Thailand based study, Tanoue et al found that indirect expenses repre-
sented two-thirds of the direct costs for a major flooding incident [172]. 
Thus, it is important to note that even in well-documented flooding 
expenses, there will also be a significant portion of indirect costs suc-
ceeding the aftermath. 

2.3. Impact of climate change on urban flooding 

Along with rapid urbanization, greater rainfall amounts or intensity 
as a result of a warming climate, will over stress the current drainage 
systems, thereby presenting an ever more severity of urban flooding 
[66,81]. In a 2019 U.S. climate report, NOAA shows that from 
September 2018 through August 2019, the precipitation mean of 37.55 
in. (953.77 mm) was 7.61 in. (193.29 mm) above average (approxi-
mately 25% higher), making the year the fourth wettest period on record 
[130]. Further, it was found that for every 1.8 degrees Fahrenheit (1 
degree Celsius) increase, the number of extreme storms increased by 
21%, and by an analysis of climate change projections, it is estimated 
that the number of severe precipitation storms will grow 60% by the 
year 2100[28]. It has also been shown that storms have increased in 
areas where overall precipitation has decreased [11,12,177]. Thus, in 
these areas, when rainfall occurs, it is doing so at greater intensities 
[177]. Lastly, there is the effect of the urban heat island. By the increase 
of urban land use, such as building and concrete installations, convec-
tion is amplified, resulting in an increase in local precipitation follows 
[139]. 

An increase in extreme precipitation from tropical cyclones and 
other storms overtaxes the urban sewer network, as the capacities are 
designed to transport smaller volumes of stormwater [81,194,197]. This 
inadequate infrastructure is exemplified in the report, The New Normal: 
Combating Storm-Related Extreme Weather in New York City, which 
was created by the City of New York in response to the devastation of 
Hurricane Ida. During the tropical storm, the two-hour rainfall amounts 
surpassed the supposed 500-year storm in NYC [131], and the hourly 
rainfall was the greatest ever on record for the city [41]. The report 
states that the peak rainfall of 3.15 in. (80.01 mm) per hour exceeded the 
sewer system’s current capacity of 1.75 in. (44.45 mm) per hour, and 
thus, it is recommended the drainage system undergo extensive reno-
vation to double its capacity, at a project estimation of $100 billion [41]. 
Considering that the previous hourly record was set by Hurricane Henri 
a month prior [41], the suggested revision is an acknowledgement that 
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there is an increasing risk of urban flooding and that design peak rainfall 
rates based on extrapolating past observations do not adequately ac-
count for the increasing rainfall intensity under a warming climate. 
Thus, due to a greater frequency of storms, specifically those of high 
rainfall intensity, urban flooding may become more severe, especially if 
the changes in the climate outpace the renovation of the sewer networks, 
which is likely considering the fiscal strains under which many cities 
labor. 

3. Causes of urban flooding 

Extreme precipitation, infrastructural factors such as the overloading 
of the sewer system or the blockage of inlet drains, topography, such as 
slope and elevation, and land features, such as buildings and impervious 
cover, play a major role in flooding risk. Geographic location may also 
determine flood risk; for example, areas located near the coasts are more 
vulnerable, where coastal waters overflow onto neighboring surfaces 
during rain events and are worsened by sea level rise and storm surge. As 
the list of possible urban flooding factors is extensive, this section puts 
forth some generally included variables and provides a foundational 
illustration of how different natural or engineering features affect water 
flow. 

3.1. Precipitation 

Precipitation is the main cause of urban flooding. While snowmelt 
holds contribution, particularly in urban areas of the northern hemi-
sphere [159,180], rainfall is the driving factor [143,157,163,180]. In 
regards to rainfall, it is important to note that there are various ex-
pressions of the variable, such as rainfall intensity, storm duration, or 
total rainfall amounts, and, subsequently, there are studies where only 
one rainfall input is utilized, and some studies where a combination of 
rainfall parameters are applied. For example, Cea et al, only includes 
rainfall intensity in their numerical method-based rainfall-runoff model 
for urban areas [33], while Qin et al utilize rainfall amount, peak in-
tensity, and duration in the investigation of low impact development 
techniques for urban stormwater management [143]. In another urban 
flood study, Liu et al employs rainfall intensity, while introducing an 
additional measure, rainfall movement direction [108]. Interestingly, in 
Liu et al, it is demonstrated that rainfall movement direction has up to a 
20% effect on peak runoff in Shenzhen, China [108]. 

Arguably, rainfall intensity, as suggested by literature and funda-
mental hydraulic design, has the greatest impact on urban flooding. 
Urban drainage systems are designed for maximum rate of discharge 
(volume per time), which is an intensity-based metric [50,160,181]. 
Specifically, in flood protection hydraulic design, a vital parameter in 
the sizing of drainage structures is the design flow rate [85], and cal-
culations of rainfall intensity are foundational for its determination 
[85,181]. Additionally, rainfall intensity for peak flow estimations is 
utilized within the U.S. Geological Survey (USGS) urban peak flow 
regression equations, where the 2-hour, 2-year occurrence rainfall in-
tensity serves as an input [75], and in NYC, a 5-year return period is used 
with hourly rainfall intensity [40]. Also, by Emil Kuichling’s rational 
method, average rainfall intensity is used, in conjunction with drainage 
area and the runoff coefficient, to determine the peak runoff rate [181]. 
While rainfall intensity is most significant, the element is oftentimes 
accompanied by storm duration values in formulations. Indeed, the 
intensity-duration-frequency curves, depicting the relationship between 
rainfall intensity, storm duration, and return period, are commonly used 
in peak flow methods for urban areas [85,181]. 

Along with the varying forms of rainfall variable estimations, there 
are also different methods of collecting the rainfall data. Mainly, there 
are two commonly used techniques, in-situ and remote sensing (radar 
and satellite), and, for urban flood applications, there are advantages 
and disadvantages of each. First, being direct measurement instruments, 
rain gauges have an advantage over remote sensing estimates, as 

common satellite issues, such as cloud top reflectance, thermal radiance, 
retrieval algorithm and overpass frequency do not apply [2], and 
although rain gauges, at times, suffer instrumental error [70], the error 
decreases with increased rainfall intensity [120]. On the other hand, an 
advantage of remote sensing data is its ability to provide adequate 
spatial distribution for rainfall estimations [176]. The distance between 
rain gauges is problematic for the hydrological model, particularly for 
small-scale urban drainages [126,184], and, in fact, some studies have 
shown it may account for as much as 20% of uncertainty [176,185]. 
Schilling suggested resolutions to be roughly 1 km for an urban area 
[156], and Berne et al. recommended a spatial resolution of 3 km for 
urban catchments of the order of 1000 ha [20]. As ground-based radar 
systems provide between 1-to-2 km resolution, the method is suitable 
[106]. In the U.S., 15 min and one hour rainfall gauge data may be 
obtained from the National Climatic Data Center NOAA [132], and a 
source of radar data is the Earth Observing Laboratory, where hourly, 6- 
hour, and 24-hour totals are available [54]. Hence, both methods of 
collecting rainfall data, remote sensing and rain gauges, have benefits 
and drawbacks, and in fact there are combined precipitation products 
that merge the different data sources in order to produce more accurate 
data. 

3.2. Topography 

The two main topographic flood factors are slope and elevation. 
First, slope, the incline of the ground surface, has effect on urban 
flooding, and similar to precipitation, many traditional hydraulic com-
putations involve slope as a fundamental variable. For instance, in the 
analysis of urban runoff, the time of concentration (a necessary variable 
in hydrograph creations) calculations rely on surface slope values 
[85,161,181]. Also, slope is a necessary component of Manning’s 
equation, which is frequently used to determine water velocity 
[85,161,181]. Larger slope angles lead to increases in velocity and 
discharge. Furthermore, studies have also illustrated the effect of slope 
on flooding. For instance, Bruwier et al demonstrated that mean water 
depth and peaks in stored runoff volume are lower in areas with greater 
slopes [27]. Thus, it seen that flatter surfaces are at higher flood 
susceptibility. 

Elevation is also a commonly considered topographical factor in 
urban flooding. Indeed, numerous flood studies utilize a digital eleva-
tion model (DEM) as a basis in urban flood assessment 
[46,101,125,189]. Specifically, elevation influences flooding, as areas of 
low elevation are at an increased flood risk [15,135]. Demonstrating the 
effect, Kocornik-Mina et al show that for urban areas 10 m above sea 
level, the annual risk of flooding is 1.3%, while for urban areas 10 m 
below sea level, the risk is substantially greater, at 4.9%[97]. One reason 
for the impact is that lower elevated areas may be located at the bottom 
of a sloped surface, where water ponding is facilitated [183]. Areas close 
in elevation to the ocean or lake surface will also be vulnerable to rise in 
the water level due to regional precipitation, storm surge, or sea level 
rise. Hence, elevation is a topographical consideration when examining 
the flood risk of a city, particularly near a coast, where many large cities 
are located. 

3.3. Land features 

Land features, which may be considered engineered impervious 
surfaces, such as concrete sidewalks or asphalt streets, or man-made 
structures, such as buildings, have an impact on urban flooding. 
Firstly, acknowledged as significant, a variable representing the 
impervious cover of ground surfaces is utilized in many traditional hy-
draulic calculations. For instance, in the rational method, the runoff 
coefficient, a dimensionless number representing the infiltration ability 
of an area, is used to calculate the peak runoff volume in urban regions 
[181]. Specifically, the runoff coefficient has a direct relationship to the 
peak runoff rate, where higher values result in higher discharges, and 
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impervious surfaces are assigned values ranging from 0.70 to 0.95, 
whereas green surfaces range from 0.05 to 0.35 values [181]. Also, in 
the Soil Conservation Service (SCS) method, cumulative runoff is 
calculated based on a direction relationship with curve number, where 
the curve number has greater values for urban districts and impervious 
surfaces, as opposed to open spaces with grass cover and meadows [85]. 
Additionally, as influences of increased flood risk, impervious cover is 
accounted for in multiple urban flood studies [48,58,168]. 

In addition to impervious ground surfaces, buildings contribute to 
urban flood occurrence. Buildings prevent infiltration, increase runoff, 
and affect the path and geometry of water flow [99]. Bruwier et al found 
that building factors, such building coverage, building size, and distance 
between buildings, dominated the other variables of the study, which 
had included street width and street curvature [27]. In another study of 
Szechuan, China, Lin et found that the density of buildings, building 
congestion, and the building coverage had more influence on pluvial 
flooding events than other variables, such as percentage of impervious 
surface, average roughness, average altitude, and average precipitation 
[107]. They demonstrated that the model incorporating building factors 
performed better (lower root relative squared error) than the model 
without inclusion [107]. Hence, building dynamics exert an appreciable 
influence on the occurrence of flooding in an urban area. 

3.4. Infrastructure 

The performance of the drainage infrastructure greatly affects urban 
flooding. The infrastructure, as related to urban flooding, includes all 
aspects of the sewer system imposed with the conveyance of stormwater. 
An inefficiency of a component adversely affects the removal of water 
from the surface. It is beyond the intent of this review to divulge into 
detailed aspects of engineering design, involving capacity calculations 
and pipe sizing methodologies; nevertheless, two main infrastructurally 
related factors are presented here: catch basin grate issues and the sur-
charged sewers. Both problem areas have been presented in prior studies 
as having noticeable impacts on flooding. 

Catch basin blockages during a storm event is a significant contrib-
utor to urban flooding, as catch basins are the primary mechanisms for 
rainwater to enter the sewer system. As in many metropolitans, there are 
few alternative outlets; thus, when trash or other debris cover a catch 
basin drain, surface water, unable to permeate the streets, begins to 
pond and ascend to flood levels. The NYC Department of Environmental 
Protection (DEP) lists catch basing clogs as one of the three main causes 
of street flooding in NYC, aside from climate change and surcharged 
sewers [39]. Agonafir et al found that catch basin clogged complaints 
reported in the NYC 311 platform were a significant predictor of street 
flooding complaints in nearly half of all NYC zip codes [4], and had 
overwhelming percentage of importance in accounting for its spatial 
variability among neighborhoods [3]. Furthermore, Despotovic et al 
conducted laboratory tests, where it was shown that inlet coverings 
prevented the capture of water flow by as much as 60%[49]. Many 
urban flood studies include a clogging factor, which depicts the amount 
of runoff remaining on the surface for a given flow [49,71,76,150]. 
Hence, the blockage of catch basins has importance in urban flood risk 
assessment. 

Surface water rises to flood levels in the advent of sewer surcharge. A 
sewer system is described as surcharged when the underground drainage 
network is at capacity, and rainwater is no longer able to enter the 
stormwater drains [39]. Moreover, there is the phenomena of extended 
surcharge, where the underground water, held under pressure, flows in 
reverse order, and exits onto the streets, usually via manholes or private 
drains [157]. Accordingly, sewer surcharge is accounted for in urban 
flood modelling [18,87,151,182]. Indeed, for adequate urban drain flow 
representation, Schmitt et al recommends a specific technique, dual 
drainage modelling, which accommodates the interaction between the 
surface flow and sewer flow during sewer surcharge [157]. Thus, to 
summarize, sewer surcharge and catch basin clogging issues depict a 

situation where rainwater gathers on the surface or streets, unable to be 
processed via the stormwater drains. With both flooding factors sharing 
the same outcome, a clogged catch basin illustrates problems within the 
external environment, where there is a blockage preventing connection 
to the underground system, and sewer surcharge and extended sur-
charge signify issues of the internal sewer system, where it is overloaded 
and poorly functioning. 

3.5. Sea level rise 

It has been shown that for the last 25 years, sea levels have been 
rising at an average rate of 3.3 mm/year [158]. Also, NOAA reports that 
water levels along the US coastline will rise an additional 10 to 12 in. 
(254 to 305 mm) by 2050, and flooding occurrence increase by 10 times 
the present frequency [133]. Therefore, for urban districts, located at a 
coast, there is increased potentiality, especially during extreme rain 
events, for the surrounding water bodies to overflow onto the land 
[72,165,171]. Griffiths et al had particularly shown that sea level rise of 
up to 47.2 in. (1.2 m) would result in higher volumes of overflow and 
longer times for stormwater removal [72]. In addition, Woodruff et al 
demonstrated that, due to sea level rise, flood levels previously associ-
ated with a 100-year storm are now taking place during three-to-20-year 
storms [186]. Thus, in certain urban areas, flooding is occurring more 
frequently due to the rising heights of the surrounding water bodies. 

4. Recent advances in urban flood modeling 

Urban flood models are often used to assess flood factors and 
determine risk zones. In an effort to protect life and property, urban 
flood modeling is a continuous endeavor. Highlighting both the tradi-
tional and recent advances, this review will discuss the main types of 
urban flood models: hydraulic-hydrologic models, cellular automata 
models, statistical models, and machine learning models. 

4.1. Early hydraulic-hydrologic models 

The hydraulic-hydrologic model, serving the purpose of simulating 
stormwater runoff, may be considered the standard approach in the 
assessment of urban flooding. Often referred to as dual drainage 
modeling, the hydrologic aspect concerns the water’s behavior on the 
ground surface; whereas, the hydraulic portion regards the sewer 
network [99]. An early dual drainage model is the Storm Water man-
agement model (SWMM)[99]. Typical inputs for SWMM include 
detailed drainage plans, rainfall data, a mapping of impervious cover, 
and a DEM [55,112]. The model then incorporates hydrologic trans-
actions, such as infiltration, interception and depression storage, and 
hydraulic processes, such as the routing of runoff through the system of 
piping, channels and storage, to simulate the behavior of stormwater 
under different climatic scenarios [55]. Thus, the SWMM model has 
many applications, including drainage design and sizing for flood con-
trol and the mapping of flood plains [55]. SWMM has been specifically 
applied towards urban flood estimation. For instance, Jiang et al utilized 
SWMM to estimate flood levels in Dongguan City, China for various 
return period precipitation [88], and Rabori and Ghazavi employed 
SWMM to simulate peak flows in the urban area of Zanjan City, Iran for 
50-year return periods [145]. 

Hydrologic-hydraulic modeling may apply two techniques, 1D/1D 
(one dimensional/one-dimensional) or 1D/2D (one dimensional/two- 
dimensional). The 1D/1D method models water flowing along surface 
streets. While it is apt at depicting the movement along one surface, it is 
limited in accounting for dynamic movement, such as the water over-
flowing curbs [99,111]. The 1D/2D model, on the other hand, simulates 
water movement that changes dimension, and it may also account for 
the infiltration of the permeable grasses or trees lining the sidewalks and 
surfaces [99,111]). While SWMM is considered a 1D/1D model, popular 
1D/2D models are MIKE URBAN and InfoWorks ICM [22,154]. MIKE 
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URBAN utilizes the SWMM mechanism; additionally, it extends by 
simulating 2D overland flow and integrating GIS capabilities [22]). Also 
integrating GIS, InfoWorks ICM simulates the urban catchment, and it 
has been used for flood risk mapping and prediction [167]. In addition, 
cities, such as NYC use InfoWorks ICM in hydraulic modeling for 
drainage design [38]. Mark et al found that 1D/1D modeling performed 
well in evaluating the interaction between rainfall and the urban envi-
ronment for larger flooding events; however, for the smaller, chronic 
urban floods, the 1D/1D models, unable capture the finer details, were 
limited in portraying accurate schematics [111]. Bisht et al found that 
the 1D/2D model, MIKE URBAN, performed better at modeling various 
levels of floods (large and small)[22]. There are, however, some draw-
backs to the 1D/2D models. 1D/2D model requires extensive computa-
tional times, and the high costs associates due to this requirements. 
Further, they incur significant licensing and development expenses 
[84,100,111]. 

There is a significant barrier for both models (1D/1D and 1D/2D) in 
regards to the availability of the inputs. Specifically, the details of the 
underground sewer network may be difficult to obtains, as for many 
metropolitans, either due to age or security concerns, the drainage de-
tails are unavailable, incomplete, or inaccessible to researchers [6]. 
Therefore, while the dual-drainage model has useful applications, there 
are also accompanying challenges, such as cost, computational time, and 
data availability. 

4.1.1. Advances in hydraulic-hydrologic models 
There have been some 1D/2D models developed to overcome the 

time efficiency issues. Since the application of Shallow Water Equations 
(SWEs) has been a distinct cause for the slow processing speed of typical 
1D/2D methods, there has been the introduction of models which em-
ploys Graphic Processing Units (GPUs) or omits less essential SWE cal-
culations [74]. JFLOW, for instance, is a well-studied model, which has 
applied GPUs, to increase processing speed [44]. In addition, JFLOW 
simplifies the SWEs by a diffusive wave approximation, assuming 
gravitational force and resistance force are in equilibrium [170]. By the 
methodology of JFLOW, processing speeds may be as much as 100 times 
faster, with results comparable to the traditional 1D/2D models 
[98,121]. However, Morris et al notes that JFLOW is better suited for 
shallow water simulations [121]. Su et al also states that, since JFLOW is 
not adept at water flowing in both directions, the model is limited when 
modeling the complexities of the urban topography [170]. Another 
model, which uses the diffusive wave approximation is LISFLOOD-FP 
[17,164]. LISFLOOD-FP 8.0 has GPU solvers parallelized, resulting in 
substantial increase in computational speed [164]. However, some 
limitations include not accurately simulating flow under complex urban 
terrains [62]. Therefore, while there are 1D/2D models, which have 
been modified to reduce computational time, limitations remained, 
specifically towards accurately simulating flow in the urban 
environment. 

In recent years models have been developed to improve the 
computational performance of the urban terrain. One such model is the 
Parallel Raster Inundation Model (PRIMo). Using a Godunov-type finite 
volume scheme for shallow water equations, PRIMo improves upon 
speed by limiting flux calculations and by parallel scaling [153]. Also, 
without drainage infrastructure information, PRIMo has been shown to 
predict flood inundation in the urban city of Los Angeles at a reasonable 
accuracy [153]. Another physical model, which has successfully 
modeled urban flooding without a map of the underground sewer sys-
tem is FLURB-2D [136]. FLURB-2D, a hydrodynamic model utilizing a 
Galerkin finite element technique for solving shallow water equations, 
creates a mapping of the area based on observed inlets [136]. Also, a 
hydrodynamic model, RIM2D, alleviates data requirements, such as 
sewer plans, by rasterizing building locations [8]. With coding on CUDA 
and runs via GPUs, this model has a simplified build, quickened pro-
cessing and the ability to forecast flooded areas, depths and velocities 
[8]. Thus, there are continuous adjustments in physical models to 

accommodate the urban area. 
Furthermore, in regards to the data availability issues, experimental 

modeling with the application of numerical methods have been of aid. In 
this context, experimental modeling refers to conducting laboratory 
experiments to simulate urban flow, such as street flow and surface- 
sewer interactions [117]. Oftentimes, the experimental models are of 
benefit to hydraulic-hydrologic models by serving as validation sets. 
This is especially helpful in the field of urban flooding, where the inci-
dence of flooding occurs quickly, creating difficulty in measuring extent. 
Moreover, when experimental models are used for validation, the 
models also detect areas of computational deficiencies. For example, in 
the Arrault et al study, an urban European experimental model not only 
evaluated the accuracy of a 2D shallow water hydraulic-hydrologic 
model; yet, it also showed issues within the Cartesian grid of the flow 
calculations [10]. Also, Li et al utilized experimental modeling to 
investigate the efficacy of the shallow water equations involved with a 
2D computation model, where open areas were identified as a vulner-
ability in the model’s prediction capability [104]. Therefore, experi-
mental modeling provides a dataset for validation and serves as a 
troubleshooting mechanism for assumptions within equations of the 
hydraulic-hydrologic model. On a final note, regarding experimental 
modeling, the validation ability of experimental datasets have been of 
benefit to other models, in addition to the hydraulic-hydrologic. For 
instance, Dottori and Todini utilized an urban district experimental 
model to analyze the efficiency a 2D cellular automata model [52]. In 
the upcoming section, cellular automata modeling in urban flooding is 
described in more detail. 

4.2. Cellular automata 

Cellular automata (CA) is a grid-based approach that has been 
applied to urban flood modeling. With CA, detailed engineering plans of 
the drainage network are not required since simplifying assumptions are 
made, and pre-processing times are much lower than those of the 
physical 1D/2D models [69,129]. CA operates by discrete time/space 
steps, where a central cell is surrounded by a group of cells, defining an 
“area of influence”[37]. The area of influence at a time step will affect 
the cell at the subsequent time step [37]. In one of the first imple-
mentations of CA to simulate water spread, Cirbus and Podhoranyi 
utilized a DEM, where a cell would portray a water level; when the water 
level is flagged flooded, the water is shown as being transferred to a 
neighboring cell [37]. Then, in conjunction with hydrologic calculations 
and optimization techniques, this CA modeling approach was able to 
simulate runoff. In later years, the CA model has been improved and 
tailored toward urban flooding applications. For instance, Ghimire et al 
utilized rainfall data, a DEM, and a constant value for Manning’s coef-
ficient to develop a CA-based algorithm [69]. Water depth was able to be 
simulated, and the researchers found the results to be comparable to the 
physical model. In addition, Armal and Al-Suhili applied a modified CA 
model to a sub-catchment in NYC, which extended by accounting for the 
blockages of inlets [9]. They found that the water levels of the CA were 
consistent with the water levels measured by survey [9]. Also, Nkwu-
nonwo et al had modified the CA model to incorporate semi-implicit 
finite difference numerical calculations (providing a physics-based 
component), and the results had shown to predict water depth in the 
urban area of Lagos, Nigeria at a Pearson correlation coefficient of 0.968 
[129]. Nevertheless, there are limitations associated with CA models. 
For instance, CA neglects momentum conservation in its formulations, 
and consequently, velocity of flow estimations are adversely affected 
[86]. Nevertheless, CA is a widely implemented approach to simulate 
water flow, with lower costs and data requirements than hydrodynamic 
modeling techniques. 

4.3. Statistical models 

Statistical Models use probabilistic techniques to evaluate flooding 
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risk or to forecast flood occurrences. Often using a Bayesian framework 
and/or including Poisson, or Negative Binomial (NB) statistical links, 
these models are employed, especially in newer studies, to remedy data 
availability and cost issues. For instance, Wu et al utilized a Bayesian 
framework to assess flood risk in the urban area of Zhengzhou City, 
China [188]. By assessing topography, rainfall, proximity and density to 
the river network, and land cover, influential factors were identified 
with low relative errors, and the mapping of predicted flooded areas 
were similar to the mapping of flooded areas based on historical events 
[188]. In another study, Li et al combined Bayesian methodology with 
Synthetic Aperture Radar observations to predict flood extent with an 
accuracy of 95%, when compared to the actual flooded conditions of the 
Houston, TX in 2017[105]. Aside from Bayesian frameworks, more 
traditional statistical regression techniques have also been used to 
examine flooding factors. For example, Agonafir et al utilized a negative 
binomial generalized linear regression technique to identify infra-
structural and climatic factors affecting NYC street flooding complaints 
[4]. Additionally, Fang et al employed a Poisson-based generalized 
linear regression to identify and rank significant flooding factors for the 
Yangtze River in China [60]. Furthermore, Sadler et al found that the 
Poisson generalized linear regression model performed well in exam-
ining flooding influences in Norfolk, VA [152]. Therefore, data-driven 
models seem to hold promise for urban flood analysis. 

4.4. Artificial intelligence and Machine learning (AI/ML) 

Considerably one of the more modern approaches towards urban 
flood assessment and prediction, AI/ML techniques also have been 
implemented as a complement to physics-based models. AI/ML de-
scribes the programming of machines, using a set of training data, to 
learn and act without explicit step-by-step instructions, and predict 
future occurrences, or prescribe recommended actions [26]. Accord-
ingly, due to the capabilities of these methods to learn from an envi-
ronment, urban flood research has potential to benefit. Historical 
observations or documentations of flooding, in addition to data, such as 
topographical and land feature conditions, allow AI/ML methods to read 
the environment, learn the situation, and provide telling information, 
thereby attenuating reliance on the more inaccessible drainage data 
needed for physical modeling. AI/ML methods are lower in computa-
tional costs, while the possibility of maintaining accuracy and efficiency 
[45,123]. However, AI/ML methods may still be limited by the avail-
ability of a long and accurate historical record for training and may not 
perform well in simulating unprecedented conditions. Moreover, for 
accurate simulation of flood inundation, they would still need mapped 
inundation for training, which is still sparse in urban environments. 
With recent advances in unmanned air vehicles (UAVs) [103,178], and 
modern approaches to using processed images from public cameras and 
social media feeds (which in themselves are done using modern AI-based 
pattern recognition techniques)[53,95,124], inundation maps could be 
generated that can serve as training set for AI/ML-based flood simula-
tion. This is still an emerging area of study. 

There are multiple methodologies, including Fuzzy Logic, Genetic 
Algorithm for Rule Set Production, Support Vector Machine, and 
Multilayer Perceptron. However, the two techniques with the greatest 
upward trend in recent years are the Artificial Neural Network (ANN) 
and Decision Tree (DT) implementations, with ANN methods repre-
senting the vast majority of published articles [123]. Thus, this review 
will elaborate the ANN and DT techniques, with more detail given to 
ANN. 

4.4.1. Artificial Neural network (ANN) 
The ANN architecture, an interconnected network of nodes, or 

“neurons”, was created with the aim of imitating the biological nervous 
system, particularly the human-brain processes [110,173]. It has been 
considered the most prevalent of AI/ML techniques for flood analysis, 
and it has the ability to understand nonlinear relationships better [123]. 

By the complex comprehension of relationships and interactions, ANNs 
are able to simulate water behavior, such as evaporation, rainfall-runoff, 
and discharge [123,173]. Indeed, Karl and Lohani found ANN modeling 
to outperform traditional statistical methods at estimating peak flow 
[93], and Zhao et al found that the ANN model had higher precision and 
accuracy in detailing flood susceptibility than logistic regression and 
support vector machine models [195]. With increasing usage, re-
searchers have also found utility in the application of ANN subsets, 
including the Convolutional Neural Network (CNN), the Feedforward 
Neural Network (FNN), and Recurrent Neural Network (RNN). 

The CNN operates by three main layers: convolution, pooling, and 
fully connected [190]. The convolution layer extracts and learns from 
the inputs; the pooling layer, often set between convolution layers, en-
hances shift-invariance by reducing resolution; then, ultimately, the 
fully connected layers build upon the convolution and pooling layers to 
perform high-level interpretation and final output cataloguing [73,190]. 
Hence, based on this building block composition, an urban environment 
may be examined, without the need of detailed engineering plans. 
Particularly, CNN aids in the creation of flood risk zones. For instance, 
Zhao et all utilized a CNN model with nine input variables to predict 
flood occurrence and to map the areas of greater flood susceptibility in 
Beijing, China [196]. Also, Peng et al, with the use of satellite imagery, 
engaged CNN for the processing of high precision urban flood maps in 
Houston, TX [140]. In addition to risk zones mapping, CNN has been 
applied to forecasting. For example, Chen et al developed a CNN-based 
forecasting model to accurately predict flood peaks [34], and Guo et al 
employed a predictive CNN model, where the computation time was 
found to be 0.5% the time of the physical model [78]. However, while 
Guo et al determined that the accuracy of the CNN was sufficient, the 
CNN did not perform as well for areas with higher slopes and varying 
terrain inputs [78]. Finally, CNN has been widely applied to image 
processing. For example, Gebrehiwot et al utilized CNN to successfully 
extract and identify flooded areas from Unmanned Aerial Vehicles im-
ages [68]. Therefore, CNN techniques are shown to have vast 
applications. 

FNNs and RNNs are related, as the RNN is a derivative of the FNN 
[51]. Concerning the FNN, it is one of the simplest forms of ANN, where, 
over the course of many cycles, the network acquires knowledge, as 
pairings of fixed-size inputs and outputs enter the first layer, feed into a 
middle layer, and moves forward through the last layer [123,169]. RNN 
extends the FNN by handling data of variable-length, thereby making it 
especially suitable for time-series analysis [51]. Thus, due to their 
simplicity, FNNs and RNNs have been applied in urban flood research. 
For instance, Berkhahn et al engaged an FNN-based urban forecasting 
model to predict flood water levels, where the FNN-based model’s ac-
curacy was found to be comparable to the physical model [19]. Also, 
Abdellatif et al used FNN methodology to forecast flooding risk factors in 
an urban catchment in England, where infrastructural issues, such as 
surcharged sewers and manhole overflows, were predicted to become 
significant issues [1]. In regards to the RNN, multiple urban flood 
studies have implemented the technique, as well [7,30,137]. Indeed, 
Apaydin et al found that the RNN was an improved ANN version [7]. 
Moreover, similar to CNN, RNN has indirect applications towards urban 
flood understanding. Kang et al demonstrated that RNN may be used for 
precipitation forecasting, which may serve as a useful component in a 
dynamic urban flood prediction tool [92]. Hence, FNN and RNN, simple 
subsets of ANN, have a wide range of functionality within urban flood 
research. 

4.4.2. Decision Tree (DT) 
In addition to ANNs, the quantity of DT studies has been increasing at 

a high rate in recent years [123]. The DT, a hierarchical model, analyzes 
and discovers connections between data and the target variable to create 
decision rules [65,127]. Naïve Bayes (NB), Reduced Error Pruning 
(REP), logistic model trees (LM), alternating decision trees (AD), Clas-
sification and Regression Tree (CART) and the Random Forest (RF) 
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techniques are some of the commonly used techniques [123]. In early 
machine learning developments, DT’s have been used for classification 
and regression, where the classification aspect is applied to target var-
iables with discrete values, and the regression is utilized for target 
variables with continuous values [47]. However, for modern urban flood 
studies, flexibility and innovation predominates, and particularly, the 
regression aspect is applied in either discrete or continuous cases. For 
instance, in the comparison of NB, REP, LM, and AD methods, Khosravi 
et al applied regression for each prediction model, where the target 
variables were discrete values representing flood locations [96]. In 
addition, algorithms, such as C4.5 and CART, which parcels continuous 
variables into discrete intervals, offer adaptability [82,144]. Thus, DTs 
are in constant development, with a flexibility that allows for tailored 
implementations towards flood prediction and susceptibility mapping. 

Of the DTs, the CART and RF methods are most distinguished [123]. 
CART operates by a tree building mechanism, where the final output is 
an interpretable set of decision rules [43]. Since its inception in the 
1980s, CART has been productively applied in numerous urban flood 
studies [35,36,147,187]. Indeed, Bouramtane et al had demonstrated 
that the prediction ability of CART surpassed support vector, logistic 
regression, and discriminant analysis models [23]. Further, the CART 
algorithm may serve as a foundational element for other algorithms. 
Specifically, the RF creates an ensemble of CART trees and fits each 
CART model to bootstrapped samples, thereby reducing the variance 
[83,102]. RF is able to handle large datasets, maintain robustness with 
noise, work with missing values, efficiently process outliers, and involve 
less overfitting than many other algorithms [24,109,148]. Subse-
quently, due to its diverse capabilities, RF models have been utilized in 
urban flood research. For instance, Wang et al used a RF model to map 
flood hazard zones in urban areas of Dongjiang River Basin, China 
[183]. In addition, Rafiei-Sardooi et al performed a comparison analysis 
of RF, support vector machine and logistic regression, and found that the 
RF produced the most accurate flood risk map [146]. Additionally, aside 
from flood hazard mapping, the RF has been applied to forecasting. For 
instance, Garcia et al implemented RF for flood forecasting in Manila, 
Philippines, and validation tests demonstrated that the flood estimations 
were accurate [67]. Therefore, urban flood researchers have found DT 
algorithms, such as CART and RT, to be of use in the understanding of 
urban flood occurrences. 

5. Conclusion 

With the main concepts, causes, impacts, and resolutions of urban 
flooding presented, this review may serve as a strategic starting point for 
researchers formulating additive ideas and methods, and it may assist as 
a guide or a primer of urban flood modeling approaches for scientists 
and engineers. Outlined below are the significant messages:  

1. Urban flooding may produce fatalities and injuries, such as blunt 
trauma, contusions, lacerations, animal bites, and puncture wounds. 
In addition, floods in urban areas may lead to water contamination, 
causing long-term health effects.  

2. Large-scaled, direct economic damages include destruction to the 
electrical systems, sewer network, plumbing infrastructure, trans-
portation services, businesses, and residential homes. Single- 
occurring extreme events may enact damages exceeding billions of 
dollars. Smaller, chronic urban flooding also bring about financial 
strain; although, the monetary damages are not as well-documented. 
In addition, there are indirect costs, such as loss of wages, rental 
income and tourism revenue.  

3. Extreme storms are projected to increase in occurrence due to 
climate change. Particularly, high intense rainfall events will 
adversely affect urban areas and induce more flooding happen-
stances. Moreover, urbanization is estimated to continue its growth; 
thus, there will be more people in the affected urban areas. 

4. Influencing factors in urban flooding include the following: precip-
itation; topography, such as slope and elevation; impervious cover, 
such as buildings and concrete surfaces; clogged catch basins; 
insufficient capacity of the sewer network; sea level rising.  

5. Early hydraulic-hydrologic based flood models while having good 
skill, often times deem impracticable due to issues involving data 
availability, costs, and computational time. Hence, in recent years, 
improved hydraulic-hydrological models have been created. These 
models are faster and utilize modern computing architecture and 
alternative forms of data.  

6. Also, as a response to the issues of earlier models, recent research has 
proceeded with data-driven models, such as cellular-automata, sta-
tistical models, and AI/ML techniques. Studies have shown these 
models to be accurate and more computationally efficient. 

With approximately, 55% of the world’s population living in urban 
areas, the increase in extreme precipitation events will only exacerbate 
consequences [179]. From the severe storms of Germany and Belgium to 
tropical depression Ida in the eastern U.S., recent years marked an 
alarming rate of death and destruction by urban floods. Thus, more than 
ever, urban flooding poses a severe threat to the international commu-
nity. As a response to the urgency, this review has presented a holistic 
view on the subject of urban flooding. 
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